skip to main content


Search for: All records

Creators/Authors contains: "Zhao, Zhiqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent spectral graph sparsificationresearch aims to construct ultra-sparse subgraphs for preserving the original graph spectral (structural) properties, such as the first few Laplacian eigenvalues and eigenvectors, which has led to the development of a variety of nearly linear time numerical and graph algorithms. However, there is very limited progress in the spectral sparsification of directed graphs. In this work, we prove the existence of nearly linear-sized spectral sparsifiers for directed graphs under certain conditions. Furthermore, we introduce a practically efficient spectral algorithm (diGRASS) for sparsifying real-world, large-scale directed graphs leveraging spectral matrix perturbation analysis. The proposed method has been evaluated using a variety of directed graphs obtained from real-world applications, showing promising results for solving directed graph Laplacians, spectral partitioning of directed graphs, and approximately computing (personalized) PageRank vectors.

     
    more » « less
    Free, publicly-accessible full text available May 31, 2025
  2. Vectorless integrity verification is becoming increasingly critical to the robust design of nanoscale integrated circuits. This article introduces a general vectorless integrity verification framework that allows computing the worst-case voltage drops or temperature (gradient) distributions across the entire chip under a set of local and global workload (power density) constraints. To address the computational challenges introduced by the large power grids and three-dimensional mesh-structured thermal grids, we propose a novel spectral approach for highly scalable vectorless verification of large chip designs by leveraging a hierarchy of almost linear-sized spectral sparsifiers of input grids that can well retain effective resistances between nodes. As a result, the vectorless integrity verification solution obtained on coarse-level problems can effectively help compute the solution of the original problem. Our approach is based on emerging spectral graph theory and graph signal processing techniques, which consists of a graph topology sparsification and graph coarsening phase, an edge weight scaling phase, as well as a solution refinement procedure. Extensive experimental results show that the proposed vectorless verification framework can efficiently and accurately obtain worst-case scenarios in even very large designs. 
    more » « less
  3. null (Ed.)
    This paper proposes a scalable multilevel framework for the spectral embedding of large undirected graphs. The proposed method first computes much smaller yet sparse graphs while preserving the key spectral (structural) properties of the original graph, by exploiting a nearly-linear time spectral graph coarsening approach. Then, the resultant spectrally-coarsened graphs are leveraged for the development of much faster algorithms for multilevel spectral graph embedding (clustering) as well as visualization of large data sets. We conducted extensive experiments using a variety of large graphs and datasets and obtained very promising results. For instance, we are able to coarsen the "coPapersCiteseer" graph with 0.43 million nodes and 16 million edges into a much smaller graph with only 13K (32X fewer) nodes and 17K (950X fewer) edges in about 16 seconds; the spectrally-coarsened graphs allow us to achieve up to 1,100X speedup for multilevel spectral graph embedding (clustering) and up to 60X speedup for t-SNE visualization of large data sets. 
    more » « less
  4. null (Ed.)
    Recent spectral graph sparsification techniques have shown promising performance in accelerating many numerical and graph algorithms, such as iterative methods for solving large sparse matrices, spectral partitioning of undirected graphs, vectorless verification of power/thermal grids, representation learning of large graphs, etc. However, prior spectral graph sparsification methods rely on fast Laplacian matrix solvers that are usually challenging to implement in practice. This work, for the first time, introduces a solver-free approach (SF-GRASS) for spectral graph sparsification by leveraging emerging spectral graph coarsening and graph signal processing (GSP) techniques. We introduce a local spectral embedding scheme for efficiently identifying spectrally-critical edges that are key to preserving graph spectral properties, such as the first few Laplacian eigenvalues and eigenvectors. Since the key kernel functions in SF-GRASS can be efficiently implemented using sparse-matrix-vector-multiplications (SpMVs), the proposed spectral approach is simple to implement and inherently parallel friendly. Our extensive experimental results show that the proposed method can produce a hierarchy of high-quality spectral sparsifiers in nearly-linear time for a variety of real-world, large-scale graphs and circuit networks when compared with prior state-of-the-art spectral methods. 
    more » « less
  5. Synergies and trade-offs among the United Nations Sustainable Development Goals (SDGs) have been hotly debated. Although the world is increasingly metacoupled (socioeconomic-environmental interactions within and across adjacent or distant systems), there is little understanding of the impacts of globally widespread and important flows on enhancing or compromising sustainability in different systems. Here, we used a new integrated framework to guide SDG synergy and trade-off analysis within and across systems, as influenced by cross-boundary tourism and wildlife translocations. The world’s terrestrial protected areas alone receive approximately 8 billion visits per year, generating a direct economic impact of US $600 billion. Globally, more than 5000 animal species and 29,000 plant species are traded across country borders, and the wildlife trade has arguably contributed to zoonotic disease worldwide, such as the ongoing COVID-19 pandemic. We synthesized 22 cases of tourism and wildlife translocations across six continents and found 33 synergies and 14 trade-offs among 10 SDGs within focal systems and across spillover systems. Our study provides an empirical demonstration of SDG interactions across spillover systems and insights for holistic sustainability governance, contributing to fostering synergies and reducing trade-offs to achieve global sustainable development in the metacoupled Anthropocene. 
    more » « less